(b) BEM: Physics-based simulation of energy use.

$$
BEC = Q_{Equip} + Q_{occup} + Q_{HVAC}
$$

Building heat emissions from: (1) Envelope, (2) Zones, and (3) HVAC system.

Modelling the impact of building energy consumption on urban thermal environment: The bias of the inventory approach

Liutao Chen¹ , Jiachuan Yang1,*

¹Department of Civil & Environmental Engineering, Hong Kong University of Science and Technology, HKSAR, China (email: chenlt@ust.hk)

Background

Appropriate estimates of AH are critical to understand the impact of human activities on urban thermal environment. The **Inventory (IVT) approach** and **Building Energy Modelling (BEM)** are the most used methods to estimate building waste heat.

= 1 $\rho_a c_p Z_B$ $Q_{H,G}$ + 2h \times $Q_{H,W}$ + **BEC** – $Q_{H,can}$ dq_{can} = 1 $\rho_a\lambda_v Z_B$ $Q_{LE,G} - Q_{LE,can}$ Different response of T_{can} by two approaches:

However, the assumptions of **IVT approach** can lead to over or under-

BEM: dT_{can} dt = 1 $\rho_a c_p Z_B$ $Q_{H,G}$ + 2h \times $Q_{H,W}$ + $\bm{Q}_{H,WH}$ $-2h \times Q_{H,vent} - Q_{H,can}$ dq_{can} dt = 1 $\rho_a\lambda_v Z_B$ $Q_{LE,G} + Q_{LE, WH} - 2h \times Q_{LE, vent} - Q_{LE, can}$

estimation of air and surface temperatures in the urban canyon. The **BEM approach**, considering the dynamic interaction between the outdoor microclimate and indoor environment, provides a reliable way to quantify the building waste heat impact on urban climate.

Map by gridded surrogates: Population density data, land use data, building dataset, etc

as source term

 $R_n + BEC = Q_H + Q_{LE} + Q_G + Q_S$

Assumption:

We conduct simulations in Beijing for three building types (residential, office, and hotel) and LCZs 1-9 in January & July to reveal the **temperature biases (***ΔTcan***) by the IVT** approach, using the results from the BEM approach as the ground truth.

Building energy consumption (**BEC**) = waste heat emission (**BWH**), No time lag, No latent heat component.

> from AHU Zone componer **Envelope componen**

Direct contribute to indoor thermal balance Heating/Cooling systems maintain room comfortable

Methods

(b) Building Energy Modelling (BEM) Approach

• Higher Δ*Tcan max* in office: BEC is larger during the working hours. IVT approach neglect building heat storage effect, and it directly adds BEC in canyon, causing rapid T_{can} increase. When the peak BWH hours coincide with the hottest time of the day, IVT can cause large

Anthropogenic heat (AH) generated by human activities in urban is an important cause of the urban heat island (UHI). In 2021, building sector accounted for 34% of total final energy use, and heat release from buildings is the largest contributor to heat emissions globally.

> Single-Layer urban canopy model coupled with Building energy model (BEM-SLUCM)

> > **Influence of A/C type across LCZs** Different A/C types have great influence on the distribution of BEC into \mathbf{Q}_{H} and \mathbf{Q}_{LE}

Water-cooled A/C scenario: IVT overestimate Q_H up to 118% \uparrow , Underestimate Q_{IF} up to 178% \downarrow .

Research Questions Considering the temperature bias caused by IVT approach has not been systematically investigated, we aim to address following questions:

- ⚫ The IVT approach demonstrates limitations in evaluating the impacts of BEC on *Tcan* , especially when accounting for the efficiencies of heating and A/C systems:
	- **Temperature Accuracy**: IVT 个 T_{can}^{max} by over 1°C in Jan. In July, it $\sqrt{T_{can}}^{mean}$ by 1.2°C when A/C heat emissions at canopy and \uparrow by 2.1°C at the rooftop.
	- **Impact of A/C Type**: The A/C type significantly influences the redistribution of BEC into *Q^H* & *QLE* heat, with IVT often ↑*Q^H* & ↓*QLE* , indicating a possible overestimation of urban heat/dry island (except window type A/C scenario).
- **Larger differences between building waste heat and energy use lead to greater biases** in *Tcan* predictions, highlighting the **critical need for accurate waste heat assessments**. ⚫ Compact and high-rise neighborhoods would benefit from adopting rooftop and water-cooled A/C systems to mitigate adverse heating impacts.

Citation: Chen, L., Yang, J., Zheng, X. (2024). Modelling the impact of building energy consumption on urban thermal environment: The bias of the inventory approach, Urban Climate, 53, 101802.

Conclusion

energy use tends to

Residential

200

Office

Hotel

100

yield larger bias on *Tcan*

 Δ BWH (W/m²) \mathbf{F} = Building waste heat emission - energy consumption

 -200

 -2

200

100

bias in LCZ 1, 2, and 7, which indicates **canyon aspect ratio** and **building surface fraction** are the key factors that influence AH-derived warming.

 -100

Δ*Tcan* **across LCZs: IVT – BEM**

 -100

 -1

 $-2 -$

Jan Boilers: 75% heat for indoor warming, 25% to outdoor. *Q*_H: 10.4% ↑, *Q*_{LE}: 5.0% ↓ **Jul A/C helps to dehumidify**: Remove indoor Latent heat

-> Sensible waste heat *QH* : 52.8% ↓, *QLE* : 49.7% ↑

Difference of BEC dissipation

Window-type A/C might enhance urban heat and dry island

Hotel buildings: A/C operates all day continuously.

Local climate zone

Local climate zone

- 1. What are the impacts of building energy consumption (BEC) on urban thermal environment?
- 2. If we assign same BEC to urban neighbourhoods, how large the temperature biases caused by IVT approach compared to BEM?